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Abstract--Agglomeration is an important aspect of aerosol behaviour. Unfortunately, it is described by 
a non-linear integro-differential equation, for which few analytical solutions are known. The equation can 
be solved numerically, but this approach has disadvantages. In this paper, agglomeration behaviour is 
described analytically and this quantitative description is used as a means of comparing the rates of 
different agglomeration mechanisms. The comparison depends on the average particle size but does not 
require detailed knowledge of the particle size distribution. The method is applied to the agglomeration 
of an aerosol suspended in the atmosphere of a pressurized water reactor (PWR) containment building. 
The rate of turbulent agglomeration in the PWR containment depends upon the degree of turbulence at 
each point in the fluid, expressed as the turbulent energy dissipation rate, 8. An approximate model of 
the containment flow is solved to obtain a satisfactory estimate of the functions of e needed in evaluating 
turbulent agglomeration rates. 
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1. I N T R O D U C T I O N  

Agglomeration of aerosol particles causes the size distribution of the particles making up an aerosol 
to change with time. Most obviously, the size distribution of an aerosol affects the rate of deposition 
of the aerosol, but it also affects the rate of aerosol heat and mass transfer processes (such as 
condensation on aerosol particles or removal of atmospheric pollutants). Agglomeration is 
therefore an important aspect of aerosol behaviour. 

Unfortunately, the effect of agglomeration on the size distribution of an aerosol is described by 
a non-linear integro-differential equation, for which few analytical solutions are known. The 
equation can be solved numerically, but this approach yields specific answers to specific questions, 
rather than general answers, which usually come from analytical solutions. Of course, a good 
understanding is more likely to be obtained from general answers. In this paper, agglomeration 
behaviour is described analytically (without solving the integro-differential equation completely) 
and this quantitative description is used as a means of comparing the rates of different 
agglomeration mechanisms. The different agglomeration mechanisms interact to some extent 
(Simons et al. 1986) but as the object of our paper is to compare the different mechanisms, each 
is considered separately. 

Loss of coolant accidents (LOCAs) in a pressurized water reactor (PWR) could result in the 
release to the containment of fission products and actinide dust. A large part of this radioactive 
material would be associated with the aerosol formed from the reactor cooling water. The release 
of activity to the environment depends upon the time for which the aerosol remains suspended in 
the containment atmosphere. This time, in turn, depends on the aerosol agglomeration rate, 
because agglomeration affects the aerosol deposition rate. Hence, aerosol agglomeration could have 
a strong influence on release of radioactivity to the environment after a LOCA. This paper includes 
a comparison of the rates at which different agglomeration mechanisms operate in a PWR 
containment. 

The rate of turbulent agglomeration in the PWR containment depends upon the degree of 
turbulence at each point in the fluid, expressed as the turbulent energy dissipation rate, ~. 
Evaluation of this parameter requires fairly detailed knowledge of the flow in the containment. A 
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rigorous solution for the containment flow is well-beyond presently available analytical or 
computational techniques. Even solutions based on approximate models of turbulence would be 
very difficult to obtain for the real containment geometry. In this paper, a simple model of the flow 
in the containment is used to obtain reasonably accurate values of e in the regions of the 
containment where e is expected to be large. This approximate method yields a satisfactory estimate 
of the functions of e needed in evaluating turbulent agglomeration rates. 

2. A G G L O M E R A T I O N  RATE PARAMETER,  09 

In order to compare agglomeration by different mechanisms, it is necessary to define a suitable 
parameter which is representative of the agglomeration process whilst being as independent as 
possible of the system variables. The collision kernel K, is a possible candidate, but since the overall 
agglomeration rate depends on the number density and size distribution of the aerosol population, 
it does not give a true measure of the relative agglomeration effectiveness. A better measure 
(suggested by Longworth in an unpublished note) is the fractional rate of change of the total 
number of aerosol particles. Here, this measure is termed the agglomeration rate parameter, oJ, and 
is defined as shown below. 

The rate at which particle number density is changed by agglomeration is given by 

dN ~ r2 (rj) drj} dr2, 
- - (~ - )~gg ,=f0  n(r2){f0 K ( r " r 2 ) n  [I] 

where 

n(r)  dr = number of particles per unit volume with radii between r and r + dr, 
K(r~, r2)= agglomeration kernel for particles of radii r~ and r2 

and 
N -  total number of particles per unit volume. 

[It has been assumed that agglomeration occurs at each collision. Pruppacher & Klett (1978) discuss 
droplet coalescence and conclude that coalescence always occurs when water droplets of radius 
~< 350/~m collide.] 

The particle size distribution n ( r )dr  may be written in terms of a dimensionless particle radius 
R and a normalized size distribution f ( R )  as follows: 

n (r) dr = N f ( R )  dR,  [2] 

where 

r 
R = - 

r c  

and 

r c = some characteristic particle size for the distribution. 

From the definition of N, 

o ~ f ( R )  dR = 1. [3] 

When K(rl ,  r2) is a homogeneous function of the particle radii of degree q then, by definition, 

K(rl , r2) = rq K ( R i ,  R2). [4] 

The volume fraction of particles, q~, is the fraction of a given volume that is occupied by particles, 
hence 

f0 f0 = = 3nNrc R3 f (R)  dR. [51 qb ~ r3n(r) dr 4 3 
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Using [3]-[5] in [1], the agglomeration rate may be written as 

dN 

where 
t® f fs2 ) 
| f(R2) ~ |  K(R,, R2)f(R,) dR,~ dR2 

= 34 rcq_ 3 .Io td0 [6] 

o~ ~ ~ o R y ( R ) d  R 

is the agglomeration rate parameter. 
The agglomeration rate parameter, oJ, is not, in general, a constant since f (R)  varies as 

agglomeration proceeds (and ~b also changes if there is particle deposition or a particle source). 
Furthermore, except for special cases where q = 3, increases in re also affect to. However, since oJ 
is proportional to the particle volume fraction, ~b, for all agglomeration mechanisms, the variation 
of oJ/~b with r~ provides a useful method of comparing the different mechanisms. 

3. BROWNIAN AGGLOMERATION 

In general the Brownian collision kernel is a function of the gas mean-free-path, but for particles 
whose radii are much larger than the mean-free-path (0.06 #m for air at NTP) the dependence is 
negligible. In this case, within Smoluchowski's approximation, the collision kernel for Brownian 
agglomeration, Ks, is independent of particle size, and is given by 

8kT 
K s  = . - - ,  [7] 

where 

k = Boltzmann's constant, 
T = absolute temperature 

and 

/~ = gas dynamic viscosity. 

Hence KB(RI, Re) = KB(rl, r2) and q = 0. 
The equation defining o~ contains f (R),  which is unknown. This difficulty can be circumvented 

by choosing the characteristic radius of the particle size distribution, re, to be the volume mean 
radius, rv, defined by 

4 3 I ®~nr3n(r)dr, ~ltr v N ffi dp = 
Jo 

which implies (cf. [5]) that 

Ry(R) = [81 dR I. 

Using [3], [7] and [8], [6] gives the Brownian rate parameter tos as 

¢,kT 
tas ffi it#r{ ' [9] 

which only depends on the particle size distribution to the extent that it affects the volume mean 
particle radius. 

In the case of turbulent or gravitational agglomeration, it is not so easy to avoid specifying the 
particle size distribution. However, since Brownian agglomeration predominates for small particle 
sizes, it will be the mechanism that increases particle size to the point where other agglomeration 
mechanisms become important. Friedlander & Wang (1966) have shown that Brownian 
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agglomeration causes any particle size distribution to asymptotically approach the form 

_ n*(V,  t )dV = N(t)2 exp dV, [10] 

where n*(V, t) d V is the number of particles per unit volume with volume between V and V + d V. 
It is therefore reasonable to assume that this will be a good approximation to the size distribution, 
when turbulent and gravitational agglomeration first become significant. The size distribution as 
a function of volume can be transformed to a size distribution as a function of radius, as shown 
in appendix A. The result is 

n(r)  dr = Nfn(R  ) dR  = N exp(-R3)3R 2 dR, [11] 

where the characteristic radius is again the volume mean radius, rv. 

4. GRAVITATIONAL AGGLOMERATION 

Differences in the gravitational settling velocities of particles in a population due to differences 
in density, size or shape can result in collisions which give rise to gravitational agglomeration. The 
collision kernel, KG(r~, r~), is given by 

where 

and 

KG(rt, r2) = 7z(r 1 + r2)2[u(rl) -- u(r2)]E(rl, r2), 

u(r)  = terminal settling velocity of particles of radius r 

E(r~, r2) = collision efficiency for particles of radius r~ and r2. 

For water droplets in air which are large compared with the mean-free-path of the gas molecules 
(0.06 #m) and whose radii are less than --. 30/zm, u(r)  is adequately given by the Stokes equation 

u(r)  = ~#gr 2, [12] 

where 

and 

p = pp  - -  p f ,  

pp = particle density 
p f  = fluid density 

g = acceleration due to gravity 

The central problem in gravitational agglomeration is the evaluation of the collision efficiency, 
E. No attempt to review this topic has been made by the authors. However, E has been discussed 
by Dunbar & Ramsdale (1984), and for particle radii < 10 #m they recommend the use of the 
"truncated" Pruppacher & Klett (1978) equation: 

f l (  r, y f o r ~ < 0 . 5  
,~ 2 \r ,  + rzJ r2 

E(r l ,  r2) = 10.05 for 0.5 ~ rA ~< 1.0. 
L r2 

[These equations introduce a physically unrealistic discontinuity at r~/r2 = 0.5. To avoid this, in 
carrying out the computations E(r~, r2) was calculated from both equations and the lower value 
of E was used.] 

Thus in terms of the dimensionless particle radii the gravitational collision kernel is given by 

t o ( r , ,  r2) = g2), 
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where 

KG(RI, R2) = i t 2pg (RI -I- R2)3(RI - R2)E(R I , R2). [131 
9# 

Hence q = 4. 
Since the collision kernel is a strong function of the particle sizes, the choice of the particle size 

distribution is very important. Provided the particles are small initially, the distribution will evolve 
to that resulting from Brownian agglomeration (as given by [11]) by the time that the particles are 
large enough for gravitational agglomeration to be important. As gravitational agglomeration 
proceeds, however, the distribution will change. In order to estimate the effect of changes in the 
distribution, therefore, a log-normal distribution will also be considered. 

4.1. Brownian Size Distribution 

Substituting [11] and [13] into [6], and noting that the characteristic radius, r0, is r~, the initial 
gravitational agglomeration rate parameter, coo(0), is given by 

3~b 2pg~ 
c°°(0) = 47t 9/~ 

f: {f? } r~ 3 exp(-R~)R~ (R~+R2)3(R2-R~)E(R~,R2)3exp(-R?)R~dR, dR2 
x [14] 

? 3  exp( -  R2)R 5 dR 

It follows from the definition of rv that the denominator in the above equation is unity. The 
double integral in the numerator has to be evaluated numerically. The value of the integral, 
accurate to better than four significant figures, is 5.865 x 10 -2.  Thus, 

coc(0) = ~ r , 5 . 8 6 5  x 10 -2 . [15] 

is 

4.2. Log-normal Size Distribution 

The dimensionless particle distribution function corresponding to a log-normal size distribution 

1 ^.exp~_l/lnR'~2"~ dR 

where 
r 

rg 

rg = geometric mean of the particle radii 

[161 

and 

fig = standard geometric deviation. 

Thus, substituting [13] and [16] into [6], and noting that the characteristic radius, ro is now rs, 
the gravitational agglomeration rate parameter for the log-normal size distribution, coc(l), is 

where 

~ =  

co~(l) = 4~t 9/~ r s o  ' [17] 

2n(ln//,)2 ~ - ~  kl n f l j  j dR, 

f l (In R2~2"~ dR2 
× expt- kln 3 R, 
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Figure 1 

and 

I f o  f I / ' lnR\  2) 2 
O - x / ~  In fig exp~-~  k i n g )  ~ R dR = exp{ 9 (In fl,)2}. 

Noting that, for a log-normal distribution, 

r~ = rg exp{~ (In fig)2}, 

[17] becomes 

coc(l ) = Pg 
- -  r v 

# exp{6(ln fig)2} 

The integral ~ has been evaluated numerically, and values of ~/exp{6(ln fl~)2} as a function of 
fig are shown in figure 1. For typical values of fig (1.1-2.5) the function is relatively insensitive to 
fig and has the value ,,-0.05 +0.02. Size distributions outside this range will have smaller 
agglomeration parameters. Thus, 

'~ Pg rv (0.05 + 0.02). coc (l) -,- ~ ~ [18] 

5. T U R B U L E N T  A G G L O M E R A T I O N  

Saffman & Turner (1956) presented a paper on the agglomeration of particles caused by 
turbulence of the suspending fluid. The paper has been quoted extensively in subsequent treatises 
on turbulent agglomeration and forms the basis of most computer codes on this subject. A brief 
description of the theory is given here together with the relevant equations. 

The theory applies to particles that are much smaller than the small eddies of the turbulence, 
so that the relative motion of the particles is governed by the small eddies. Eddies are associated 
with deformation and acceleration of the fluid. These two processes give rise to the two 
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agglomeration mechanisms described by Saffman & Turner (1956). The first mechanism is caused 
by the motion of the fluid itself, whereas the second is caused by motion of the particle relative 
to the fluid. 

Within a small region, the motions of the fluid, relative to a point moving with the fluid, may 
be resolved into a strain and a rotation. Clearly, rotation of the fluid does not affect the distance 
between particles moving with it. Strain, on the other hand, causes an initially spherical region of 
the fluid to become ellipsoidal in shape. Thus, particles in some parts of the initially spherical region 
will be brought closer together and may undergo collisions and agglomerate. The term "turbulent 
strain agglomeration" may be used for this mechanism of agglomeration due to motion with the 
fluid. A shear motion has a non-zero strain component and therefore can cause agglomeration. 
Hence the mechanism is sometimes referred to as turbulent shear agglomeration. 

Acceleration of the fluid will cause suspended particles to move relative to the fluid (because of 
their inertia). The relative velocity between particle and fluid caused by acceleration will be different 
for particles of different mass or size, just as particles have different settling velocities under gravity 
(a constant acceleration is indistinguishable from gravity in its effects). Although the fluid 
accelerations are not constant, it will be a good approximation to treat them as constant provided 
that the time scale of fluctuations in fluid acceleration is long compared to the particle relaxation 
time, z = 2r2pp/9/z. This is a necessary condition for the validity of Saffman & Turner's (1956) 
calculations of agglomeration "due to motion relative to the air". This agglomeration mechanism, 
resulting from the different relative particle velocities induced by the fluid acceleration, is commonly 
referred to as turbulent inertial agglomeration. 

Saffman & Turner (1956) assumed that the collision efficiency for both strain and inertial 
mechanisms is unity, citing experimental evidence on shear agglomeration to justify the assumption. 
This assumption was made "in the absence of further evidence". Since their paper appeared, the 
collision efficiency of particles falling under gravity has been investigated experimentally and 
theoretically, and better approximations than collision efficiency - 1 are available. However, later 
experimental evidence (Okuyama et al. 1978) is consistent with a collision efficiency of 1 for strain 
agglomeration. In this paper, therefore, the collision efficiency will be taken to be 1 for strain 
agglomeration, but for the inertial mechanism the Pruppacher and Klett equations for the 
gravitational collision efficiency will be used. 

A detailed discussion of strain agglomeration is given by Payne (1988), who shows that, although 
Saffman & Turner's (1956) paper has a typographical error, the final result is correct (Saffman 
1988). The collision kernel for turbulent strain agglomeration is 

KT~(rl, r2) = (rl + r2)  3 ~ [19] 
~/ 15v' 

where 

8 = turbulent energy dissipation rate per unit mass of fluid 

and 

v =/z  is the kinematic viscosity. 
Pf 

Calculation of the inertial term is more difficult, and Saffman & Turner (1956) derived only an 
approximate expression for the collision rate, by assuming a simple, idealized form for the 
probability distribution, P(w), of the particles' relative velocity w. P(w) was chosen such that the 
resulting variance in w was equal to the variance calculated from the relative fluid-fluid velocity 
(equivalent to the strain term above) and the relative timid-particle velocity. The latter, which is 
calculated from the equation of motion of the particle, gives the inertial component of agglomer- 
ation and includes the effect of gravity. The resultant collision kernel is 

/ 8 n / 2 p  \2 2 2 2 FT'D-6-~ 21 (rz'f'r2)2 / '~-~)(rz--r2)L~-- i t  ) +g J 8 ~  
+ ~-  (r2 + r2)2 _8, 

v 
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where u is the velocity of the fluid surrounding the particle and D/Dt denotes differentiation 
following the fluid. The terms in square brackets represent the effect of fluid acceleration and 
gravity, and the term involving e represents the effect of fluid strain. Comparison of the 
gravitational term with [13] shows that, apart from the collision efficiency, the two only differ by 
a small numerical factor n, of. 8 , ¢ / ~ .  Similarly, the strain component only differs by a small factor 
x/8n/9, compared to, x/8n/15 [19]. 

The good agreement between these two terms and the rigorous solutions gives confidence that 
the inertial term, too, is correct to within a factor of ~ 2. 

The most cogent argument in favour of the inclusion of the inertial term, however, is that 
turbulent acceleration is, in principle, indistinguishable from gravity (except that it is unsteady), 
and so the gravitational agglomeration expressions must apply, but with g replaced by turbulent 
acceleration. 

Noting that the turbulent acceleration is given by (Batchelor 1951). 

~-~-j = 3 x 1.3 v I/----~ 

and including the collision efficiency, the inertial turbulent collision kernel, gTi(rl , / '2) , becomes 

2p / 8  x 1.3e 3/2 
gTi ( r l ,  r2) = n ~ - ~  (r I + r2)3(rl - -  r2) 4 nvl /2 E(rl, r2). 

Thus, in terms of the dimensionless particle radii, the turbulent strain collision kernel is given by 

KTs(r, , r2)  = r3 KT+(R~ , RO, 

where 

KT,(R,, R2) = (R, + R2) 3 X/15 v . [20] 

The turbulent inertial collision kernel is 

KTi(rl ,  r2) = r~KTi(R1, R2), 

where 
2p --~/8 X 1.3~ 3/2 (R t + R2)3(R t _ R2)E(Rt, R2). [21] Kri (Rt, R2) = n ~ 7re t/2 

Doubt has been expressed about whether the inertial term should be included in turbulent 
agglomeration since, it is suggested, the experiments of Delichatsios & Probstein (1975) and 
Okuyama et al. (1978) may be explained in terms of strain agglomeration only. The ratio of the 
inertial to the strain agglomeration rate is 

KTi(rl ,  r2) 
---- (Rt -- R2)E(Rt, R2)rc p-p- (ev) t/4. 

KTs(rl, r2) # 

Thus, the strain dominates over the inertial mechanism at low turbulent energy dissipation rates, 
for high viscosity fluids and when the particle/fluid density difference is small. Under the conditions 
in Delichatsios & Probstein's (1975) experiment (0.6 #m latex spheres in water with ~ = 0.3 m 2 s-3), 
the inertial mechanism would not be expected to be significant; and in the Okuyama et al. (1978) 
experiments (0.27-0.9 #m liquid droplets in air with e from 8 to 8 x 103 m 2 s-3), the authors 
themselves consider that the inertial mechanism causes the departure of their data from the strain 
equation with increasing intensity of turbulence and at larger particle sizes. 

There seems little justification, either on theoretical or experimental grounds, for discarding the 
inertial term, and it is recommended that it be retained in agglomeration calculations. 

6. TURBULENT AGGLOMERATION PARAMETER 

The equations discussed in section 5 will be used to evaluate the agglomeration parameter tOT 
for tWO particle size distributions. For the reasons already discussed in section 4, o~ T will be 
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evaluated both for the particle size resulting from Brownian agglomeration and for a log-normal 
distribution. The inertial and strain mechanisms will be evaluated separately. 

6.1. Turbulent Strain Agglomeration 

Substituting [20] into [6] and noting that for this case q = 3, the turbulent strain agglomeration 
parameter becomes 

34 8/8-~s f:f(R2){~ f:(Rl+R2)3f(Rl)dRt}dR2 
[221 (DTs = 

: Ry(R) dR 

Expanding (R, + R:) 3 in [22], the integrals over RI and R2 can be separated, so that 

COTs = 

f :  Ry(R) dR 

6.1. I. Brownian size distribution 

Substituting [11] into [23] and noting that (Abramowitz & Stegun 1965) 

and 

f0°° R°f~(R) dR = F (1 + 3 ) ,  

r(2) = r(1) = 1 

(4)  ( 5 ) 1  (1)  2 ( 2 ) 1 2  2~33 r ~ r ~  = j r  ~ j r  ~ = ~  , 

[231 

the turbulent strain agglomeration parameter for a Brownian distribution is given by 

mr, (0) = ~ X/ 15v -~--~]" [241 

6.1.2. Log-normal size distribution 

Substituting [16] into [23] and noting that (Aitchison & Brown 1973) 
a 2 

the turbulent strain agglomeration parameter for a log-normal distribution becomes 

34 ~ (1 + 3 exp{-2(ln~,)2}). [25] on(l) -- ~ X/ 15v 

The function (1 + 3 exp{-2(In ps)2}) is shown in figure 2. The function varies quite rapidly, but 
is bounded by the upper limit of 4 and the lower limit of I (indeed, these bounds apply for an 
arbitrary size distribution). However, over the range of fls that is likely to occur in practice, the 
function may be approximated by ~2.5 + 1. Thus, 

81t8 
°>r,(l) -~ ~-~ ~ 5 ~  (2.5 + 1). [26] 

6.2. Turbulent Inertial Agglomeration 

As discussed in section 5, turbulent inertial agglomeration arises from the response of particles 
to the acceleration of the fluid. Therefore, the form of the collision kernel, [211, is similar to that 
for gravitational agglomeration, [13], with the acceleration due to gravity, g, replaced by a turbulent 
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F i g u r e  2 

acceleration, gT, given by 

8 x 1.3~ 3/2 
gT  ---- I/2 [27] 

7~V 

Thus, the inertial agglomeration rate parameters for the two particle size distributions may be 
deduced from the results of section 4. 

6.Z I. Brownian size distribution 

Replacement of g in [15] by gT and use of  [27] yields 

p x/8 x 1.3e 3/2 
(OTi(0) = ~ r v  - -  7~V1/2  5 . 8 6 5  × 10  -2 .  

6.2.2. Log-normal size distribution 

Replacement of  g in [19] by gT and use of [27] yields 

,. C~Pr /8 x 1.383/2 
(0.05 + 0.02). 

[28] 

[29] 

7. TURBULENT ENERGY DISSIPATION RATE, e 

In order to calculate the agglomeration rate due to turbulence in the fluid it is necessary to know 
the turbulent energy dissipation rate, 8, which is the rate of  dissipation of  fluid kinetic energy per 
unit mass of  fluid. Following the release of  radioactivity to the PWR containment there ~11 be 
several sources of  energy input to the containment. Not  all of  this energy will be:dissipated by fluid 
motion, however, since much will be, lost by conduction, condensation, radiation etc: In order to 
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calculate e, therefore, it is necessary to have a detailed description of the flow generated by these 
energy sources. 

A further, major complication arises due to the fact that it is not e I but e 1/2 or e 3/4 which appears 
in the agglomeration rate parameter. Thus, for a uniform spacial particle distribution, it is the 
average value (denoted by an overbar) of e 1/2 or e 3/4 that is required, rather than g. When the energy 
dissipation is uniformly distributed throughout the containment this causes no problem. If only 
a small frac___tion,f, of the volume is involved, however, there can be a substantial difference between 
g,/2 and /~1/2, since 

e I/2 =fl /2gl/2.  

In the case of a steam jet, for example, the volume in which the turbulent energy is dissipated may 
be only ~ 10 -4 of the containment volume, in which case 

el/2 = 10-2~ 1/2, 

i.e. two orders of magnitude difference. 
Thus, it is essential to know the distribution of the energy dissipation, and this imposes a further 

requirement for a specific model of the turbulent energy dissipation mechanism. The complicated 
geometry of the containment, the existence of several sources of fluid kinetic energy, and the 
diversity of the accident sequences, preclude a general solution to the problem. In the following 
sections, the turbulent dissipation of energy from several different possible sources is estimated. 

In principle, thermal hydraulic computer codes can be used to model specific accidents and give 
values for e I/2 and e 3/4. A particular case of a buoyant steam jet in a containment (the LACE 
experiment) has been analysed using the FEAT fluid mechanics code (Hutton in an unpublished 
work). The results obtained support the simpler method of calculation used in sections 7.1 (for a 
steam plume) and 7.3 (for a jet). 

7.1. Steam Plume 

The major energy input mechanism to the containment atmosphere is believed to be the steam 
plume, issuing from a breach in the primary circuit, produced by boiling of the reactor coolant 
by the decay heat. In this section, a simplified model of this situation is analysed to estimate e i/2 
and e 3/4. Three cases will be considered: 

1. 40 MW decay heat, steam emerging at 100°C through a I m dia hole into a 
containment at 1 bar and 40°C. 

2. 40 MW decay heat, steam emerging at 100°C through four well-separated 1 m dia 
holes into a containment at 1 bar and 40°C. 

3. 20MW decay heat, steam emerging at 145°C through a I m dia hole into 
containment at 4 bar and 145°C. 

The components of the plume energy which are dissipated as turbulence in the containment are 
the kinetic energy, and the gravitational potential energy of the buoyant steam. Thus, case 1 
corresponds to a relatively high turbulent energy dissipation rate, since the decay heat (and hence 
steam flow rate) is high. Also, the density difference between the plume and the containment 
atmosphere (and hence the buoyancy) is large. Case 2 corresponds to a leak into an internal 
compartment, such that the steam emerges into the open containment through four holes. In this 
ease the spatial distribution of the dissipation of gravitational potential energy is more even, but 
the kinetic energy is almost all dissipated in the internal compartment, making a negligible 
contribution to the containment-averaged e~/2 or e3/4. Case 3 is intended to represent the low end 
of the range of possible accidents. It has a lower steam flow rate and, at the higher containment 
pressure, the density difference between the plume and the atmosphere is less than in cases 1 and 2. 

Details of the analysis of steam plume behaviour are given in appendix B. The results of the 
analysis show that buoyancy is the major contributor to e -r~, since the plume rises to the full 50 m 
containment height driven by the buoyancy (the plume radius at 50 m was ~ 10 m), whereas the 
kinetic energy is dissipated over a short plume length. 

MF 19]~--D 
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The values obtained for e~/2 and 23/4 for the three cases are: 

case 1 case 2 case 3 

e I/2 (m 2 S-3) 1/2 "~0.08 "~'0.1 ~0.01 
/~3/4 (m2 S-3)3/4 ~ 0 . 1  ~ 0 . 0 8  ~ 0 . 0 0 4  

The values for cases 1 and 2 are similar because the more even distribution of potenti__aal energy 
dissipation approximately compensates for the loss of  the kinetic energy contribution.__e i/2 is more 
sensitive to the distribution of  e than e 3/4, hence case 2 gives a slightly higher value of  e i/2 than case 
1 but a slightly lower value of  e -37. 

7.2. Sprays 

Operation of the spray in the containment following a release of steam will result in a 
recirculating air flow, downwards in the centre and upwards near the containment walls. Turbulent 
energy will be dissipated in this flow. Measurements at the Ringhals LWR showed that the 
maximum entrained air velocity was 4.5 m s  -1, with a representative value of about 1 -2m s -1. 
Similar values may be assumed for Sizewell, and used to estimate the turbulent energy dissipation 
rate. Townsend (1976), for example, shows that 

U .3 

l '  

where 

u'  = fluctuating component of the flow velocity 

and 

1 = dimension of  the large eddies. 

Typically, u' may be up to 1/10 of  the mainstream flow velocity (Bradshaw 1971). Taking I to be 
1/10 of the containment dimension of  ~,50 m, 

(0.2) 3 
e - = 0.0016 m 2 s -3. 

5 

In this case the flow is likely to be distributed relatively uniformly over the containment volume 
so that 

el/2 _ gl/2 _ 0.04 (m 2 s-3) 1/2 

and 
23/4 ~_~ ~3/4 ~ 0 .008  (m 2 S-3) 3/4. 

7.3. Hydrogen Mixing Fans 

The hydrogen mixing fans are designed to produce jets that reach the containment roof, in order 
to keep the atmosphere well-mixed and prevent the local accumulation of  explosive concentrations 
of  hydrogen. These fans will contribute to the turbulence in the containment. There are four fans, 
each with a flow rate of 20 m 3 s- 1, and a discharge area of ~ 1.8 m 2. Regarding the flow from each 
fan as an air jet with initial velocity of  11 m s- ~ and no buoyancy, then following the method of 
calculation in appendix B the mean turbulent energy dissipation rates generated by all four fans 
are: 

e i/2 = 0.06 (m 2 s-3) ~/2 

and 
e 3/4 = 0.05 (m 2 s-3) 3/4. 

Although these dissipation rates are smaller than those of cases 1 and 2 for the steam jet, they 
are far from negligible and have the advantage that they are less dependent on the details of  the 
accident. (In certain accidents not all four fans may be working.) 
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7.4. Containment Fan Coolers 

The fans that circulate the containment atmosphere through the four coolers are a further source 
of turbulent energy. During a LOCA, the flow rate through each cooler is 32 m 3 s- l (Gittus et al. 
1984). In normal operation the fans blow air through ducting, but during a LOCA fusible links 
melt and allow a direct path to the containment to open. The flow area into the containment 
approximately equals the cross-sectional area of the fan (Sizewell B Pre-Construction Safety Report 
1982). The fan tip diameter is 66" (Gittus et al. 1984). Thus, the fan coolers produce a jet of velocity 
~ 14 m s-i from an area of ~ 2.2 m 2. These figures correspond to a kinetic energy flux about 3 times 
larger than that produced by the hydrogen mixing fans, so larger values of e might be expected. 
However, the containment cooler fans exhaust close to the wall of the containment where there 
are several structures, so it is not realistic to treat the flows as free jets. Detailed modelling of the 
containment geometry, in the fan exhaust region at least, would be necessary to estimate the 
distribution of e. Qualitatively, interaction of the jets with walls and other structures causes 
localized dissipation of energy, compared to a free jet. Therefore, despite the increase__ in__kinetic 
energy flux, it is unlikely that the fan coolers produce significantly larger values of e 1/2 or e 3/4 than 
the hydrogen mixing fans. 

8. N U M E R I C A L  VALUES OF THE A G G L O M E R A T I O N  RATE PARAMETER 
IN A PWR 

In order to compare the agglomeration rate parameters for the various mechanisms discussed 
above it is necessary to assign numerical values to the parameters in the equations. A saturated 
steam/air mixture at 100°C is assumed, and the following values are used: 

k =  1.38 x 10-23 J K  -l ,  

T = 100°C (373 K), 

# = 2 x  10-Skgm- ls  -l, 

p = (pp - pf) = 1 x 10 3 kg m -3, 

g = 9 . 8 m s  -2 

and 
v =  1 x 10 -Sm 2s -I. 

The consideration of  the turbulent energy dissipation rate in section 7 showed that the steam 
jet is likely to be the major contributor to the relevant turbulent energy parameters, ~ i/2 and ~3/4. 
Values quoted in that section are only approximate, and depend on the specific details of 
the incident. In evaluating the importance of turbulent agglomeration, it i___s sufficient to use the 
highest values from the three cases considered. These values are e,I/2=O.l(m2s-3)l/2 and 
~-~ = 0.1 (m 2 s-3) 3/4. 

Using these values, co/~ (agglomeration rate parameter divided by particle volume fraction) has 
been calculated for the various agglomeration mechanisms, The results are shown in figure 3. (For 
gravitational and turbulent inertial agglomeration, the co/~ curves for the log-normal and [11] 
particle size distributions are virtually identical, so only one line is shown.) 

9. DISCUSSION 

Brownian agglomeration is well-understood for particles larger than the mean-free-path of the 
gas molecules, as is the case here, and, since the rate parameter is insensitive to the size distribution 
when the volume mean radius is used, [12] and the line shown in figure 3 may be taken as 
well-¢stablished. 

The gravitational agglomeration rate constant is strongly dependent on the collision efficiency 
and no attempt has been made in this paper to assess this parameter. The value used was that 
recommended by Dunbar & Ramsdale (1984). The particle size distribution strongly affects the 
gravitational agglomeration rate. I f  the aerosol droplets are small initially, then, when gravitational 
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agglomeration first becomes significant, the size distribution is that resulting from Brownian 
agglomeration. As agglomeration proceeds the distribution may change; to assess this the rate 
parameter for a log-normal as well as a Brownian distribution was calculated. Over the range of 
log-normal distributions likely to be encountered in practice co G only varied by ,-, +50%, the 
average being close to that for the Brownian distribution. Only in the unlikely cases of an extremely 
wide or an almost monodisperse distribution will the rate parameter differ significantly from that 
shown in figure 3. 

The Saffman & Turner (1956) theory of turbulent agglomeration has been discussed. Whilst it 
is recognized that their treatment of inertial agglomeration is only approximate (compared to that 
of strain agglomeration, which is relatively rigorous), there seems little doubt that the phenomenon 
exists, and that their equations are probably correct to within a factor of 2. Furthermore, there 
is no justification on the experimental evidence to ignore the inertial term. Therefore, it is 
recommended that the term be retained in agglomeration calculations. 

The collision efficiency in turbulent agglomeration is not well-established. Since the strain and 
inertial mechanisms are quite different there is no reason for the collision efficiencies to be the same 
for each. Saffman & Turner (1956) cited evidence suggesting a value of unity for the strain 
agglomeration efficiency, and this is supported by later experiments (Okuyama et al. 1978) so unit 
strain agglomeration efficiency has been used here. The equivalence of the inertial mechanism to 
gravitational agglomeration suggests that the same collision efficiency be used in both cases, and 
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this is done here. (This also ensures a degree of consistency when comparing the gravitational and 
inertial mechanisms.) 

The sensitivity of the turbulent agglomeration rate parameters to the particle size distribution 
has been evaluated. For the inertial mechanism, the sensitivity is the same as for gravitational 
agglomeration, i.e. ~ _+ 50%. For the strain mechanism also the uncertainty is unlikely to be 
> + 50%. 

The greatest uncertainty in turbulent agglomeration is in the turbulent energy dissipation rate, 
e, largely because account must be taken of its spacial variation when calculating the appropriate 
quantities to be used in the agglomeration equations. These quantities depend on the flow in the 
containment and, hence, are strongly sensitive to the details of the accident and the containment 
geometry. Computational fluid mechanics codes may provide accurate values for reasonably simple 
geometries, but these are not presently available for even a simplified PWR containment geometry. 
Furthermore, it would be very difficult to obtain solutions in the real containment geometry 
(including internal structures, for instance). Therefore, estimates have been made of the turbulent 
energy dissipation rate from a selection of sources, using a very simple model of the containment 
flow. 

The major contributor to turbulence in the containment following a LOCA is expected to be 
the steam plume caused by release of the boiling coolant. Although the results shown in section 
7 confirm this to be the case, the energy dissipation from the plume is strongly dependent on the 
details of the accident, and uncertainty in the value of about an order of magnitude should be 
assumed. 

The hydrogen mixing fans and the containment fan coolers are possibly more reliable sources 
of turbulent energy. They yield values of 8 I/2 and 83/4 that lie within the range of values found for 
the steam plume in the three cases considered. Other sources were found not to contribute 
significantly. 

Comparison of the agglomeration mechanisms is shown in figure 3. In the absence of turbulent 
agglomeration the minimum rate occurs when the particle volume mean radius is ~ 2 #m. At the 
turbulence levels expected in the containment the inertial turbulent agglomeration mechanism does 
not contribute significantly. For the particular accident conditions assumed in case 2 for the steam 
plume, the strain mechanism is predicted to have some effect. The contribution is not dramatic, 
however, and only increases the average rate by about a factor of 2. Using the value for the more 
reliable source of the hydrogen mixing fans would give a negligible contribution from turbulent 
agglomeration. 

On the basis of the cases considered here, therefore, turbulent agglomeration appears unlikely 
to make a significant c__ontribution to the overall aerosol growth rate. It is emphasized that the 
estimates of e - ~  and e 3/4 reported here are rather crude. However, it must be recognized that even 
the most sophisticated methods currently available would yield results that were subject to 
considerable uncertainty, both in the accuracy of the result for given accident conditions, and in 
the accident conditions that should be assumed. In the most representative case presently available 
(the LACE containment) sophisticated methods give results within a factor of 2 of the method used 
here. Therefore, it is considered that the result of more sophisticated methods are unlikely to alter 
the conclusion reached here. 

10. CONCLUSIONS 

A method of analysis of aerosol agglomeration has been developed, based on an equation for 
the rate of change of the total number of particles N (expressed in terms of a rate "contant" co). 
The equation for N is obtained by integrating the full integro-differential agglomeration equation 
over all particle sizes. The integration loses information on the change in shape of the particle size 
distribution, f (R),  with time, but makes the problem tractable analytically. The approach is useful 
provided that this ignorance o f f ( R )  does not preclude a calculation of co. The effect on co of 
uncertainties inf (R)  has been examined for Brownian, turbulent and gravitational agglomeration 
mechanisms, with the following results: 



466 J .F .B .  PAYNE and G. SKYRME 

For Brownian agglomeration, co is independent o f f (R)  when the volume mean radius 
is chosen as the characteristic radius of the distribution (within Smoluchowski's 
approximation of the Brownian agglomeration kernel). 
For turbulent strain agglomeration, changes in f(R) change 09 by at most a factor 
of 4. For the range of size distributions that is likely to occur in practice, 09 is 
uncertain to within a factor of 2. 
For gravitational and turbulent inertial agglomeration, the effect o f f ( R )  on 09 is 
theoretically unbounded, since a monodisperse distribution gives no agglomeration, 
and other distributions do allow agglomeration. However, for the range of size 
distributions that is likely to occur in practice, 09 is again uncertain to within only 
a factor of 2. 

Thus, the rate "constant",  09, can be calculated approximately when the particle size distribution 
is unknown. 

Although the shape of the size distribution has only a relatively small effect, the rate of Brownian, 
gravitational or turbulent inertial agglomeration does depend on the average size of the aerosol 
particles. The volume mean radius, rv, can be calculated directly from the total number of particles, 
N, and the volume fraction, tp. Hence, knowledge of the time dependence of N allows the time 
dependence of rv to be obtained, either when aerosol deposition rates are negligible (so ~b is 
constant) or when the time dependence of ~b is known. 

Turbulent agglomeration has been reviewed. Subsequent experiments support Saffman & 
Turner's (1956) analysis of turbulent agglomeration, including their suggestion that the turbulent 
strain collision efficiency -~ 1. The equivalence of turbulent inertial and gravitational agglomeration 
mechanisms suggests that the turbulent inertial collision efficiency will be the same as the 
gravitational collision efficiency, which is ~ 1. 

The analytical approach developed in this paper has been applied to the behaviour of a water 
aerosol produced in the containment of a PWR by a LOCA. By comparing the rate constants for 
the various mechanisms, the importance of turbulent agglomeration has been assessed without the 
need for any assumptions about the aerosol volume fraction, or its size distribution, f(R). It is 
concluded that: 

1. On the basis of the cases considered here, turbulent agglomeration appears 
unlikely to make a significant contribution to the overall aerosol growth rate. 
When the mean particle size is less than ,,~ 2 #m, agglomeration is largely due to 
Brownian motion. When the mean particle size is larger than ~ 2 #m, agglomer- 
ation is largely due to gravity. 

2. The greatest uncertainty in the assessment is in the input data to the containment 
flow model, which are strongly dependent on the details of the accident. Values 
have been calculated for specific assumed accidents that are thought to represent 
the likely range of turbulence conditions. 

3. A major difficulty in the calculation of the turbulent agglomeration rate lies in the 
evaluation of the rate and spatial distribution of dissipation of turbulent energy. 
In this paper, a simplified model of flow in the containment has been set up and 
solved to obtain the information necessary to the prediction of turbulent 
agglomeration rate. 

4. The use of more sophisticated containment flow models is unlikely to alter 
conclusion 1, because (a) the uncertainty in the accident situation would remain 
and (b) the results of the simple model substantially agree with the results of a 
more sophisticated model where these are available. 

Acknowledgement--This work was carried out at Berkeley Nuclear Laboratories and is published with the 
permission of Nuclear Electric plc. 
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APPENDIX A 

Size Distribution Produced by Brownian Agglomeration 

The size distribution resulting from agglomeration obviously depends on the initial size 
distribution. However, Wang (1966) argues that, at long times, the size distribution approximates 
to a form that is independent of the initial distribution, namely 

N(t)2 e x p ( N ~ ) V ) ,  n*(V, t) = - - ~  

where n*(V, t) d V is the number of particles per unit volume with volume between V and V + d V. 
This distribution will now be rewritten as a function of particle radius, n(r)dr, i.e. the number of 
particles per unit volume with a radius between r and r + dr. This is a more convenient form for 
calculation of agglomeration rates. 

Define V¢ by NV¢ = ~ so that 

n*(V,t)dV=-~cexp - dV 

is the number of particles per unit volume with volume between V and V + dV and is also the 
number of particles per unit volume with radius between r and r + dr provided (4/3)~r 3 = V and 



468 J .F .B .  PAYNE and G. SKYRME 

4nr 2 dr = dV. Thus, 

n(r, t )dr  = ~ e x p  - dV=--g3-ex p - r2dr, 
r c 

where r c is given by (4/3)nr 3 = Vc. 
In terms of the dimensionless functions of dimensionless radius, f(R): 

3N // r3"~ 
n(r) dr = .-5- e x p / - s 3 / r 2  dr = N e x p ( -  R3)3R 2 dR = Nf (R)dR 

rc \ rc/ 

SO 

fB(R) dR = exp( -R3)3R 2 dR, 

where fB (R )dR  is the dimensionless size distribution for the size distribution generated, at large 
times, by Brownian agglomeration. 

A P P E N D I X  B 

Containment Flow Modelling 

The model 

The model of the containment flow given here is set up for the specific purpose of  estimating 
the energy dissipation within the containment. This limited objective allows one to make 
simplifying assumptions that render the problem tractable. The most important assumption is that 
the flow in the containment may be described as one or more jets or plumes which behave like free 
jets/plumes (until they reach the top of  the containment building). In other words, the jets/plumes 
are assumed to be surrounded by stagnant fluid--the interaction with the weak downflow that must 
occur to balance the upflow in the jet and the interaction between jets (when more than one is 
present) are assumed to be negligible. The consequences of  this assumption will be considered in 
the discussion. In all cases, the plumes are assumed to travel 50 m before reaching the top of the 
containment. 

Equations of  motion 

The equations governing the behaviour of a vertical turbulent buoyant plume in a stagnant 
ambient atmosphere of  contant density may be derived from conservation of momentum, mass and 
volume (Briggs 1975). Assuming " top-hat"  profiles of velocity and density difference (constant up 
to radius r, zero beyond this radius) the equations are: 

d 
dz (Pju2r2) = r2Apg' [B. 1] 

d 
d--z~ (pj urz) = 2rUePa [B.2] 

and 

where 

d (ur2) = 2rue [B.3] 
dz 

pj = jet density, 
Pa = density of the ambient fluid, 

Ap = Pa - -  P j ,  

r = jet radius, 
u = jet velocity, 
z = vertical distance (positive upwards), 
g = acceleration due to gravity 
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and 

ue = entrainment velocity, effectively defined by [B.3]. 

Note that a jet is just a special case of a plume with pj = Pa. 
It follows immediately from [B.2] and [B.3] that 

d (Apur ) = O, [B.4] 

i.e. the "buoyancy flux" Apur ~ is a conserved quantity in the plume. 
The equations are incomplete because ue is not specified. For jets of the same density as the 

ambient field, dimensional arguments show that ue scales on u, and experiments show that 
u c -  0.08u. For a buoyant plume, experiments suggest that u e ~-0.124u. The equation 

uc = ~u [B.5] 

is used to determine uc, with a suitable value for a according as the flow is a jet or a plume. 
Equations [B.1]-[B.3] and [B.5] can be rearranged to give explicit equations for the variation of 
r, u and Ap with z: 

az Ap) ' 

dr r du 

dz 2u dz 

in.6] 

[B.7] 

and 
d Ap 
dzz (Ap) = - 2~ r [B.8] 

This system of differential equations was solved numerically by the Buiirsch-Stoer method (Press 
et al. 1986). It is only necessary to solve [B.6] and [B.7] for u and r because Ap is determined by 
buoyancy flux conservation. However, Ap was obtained by solving equation [B.8]. This was done 
to check: 

and 

the algebra leading to [B.6]-[B.8], 
that the correct equations were programmed into the solver 

that the equations were solved accurately; 

by verifying that the computed values conserve buoyancy flux. 

Energy dissipation 

The energy dissipated in a horizontal slice of the plume is given by the difference between the 
kinetic energy fluxes into and out of the slice added to the work done on the slice by pressure forces 
(the pressure is not constant in a buoyant plume because of the density difference between the plume 
and ambient fluid, consequently the pressure forces do net work on the plume). Since there are 
no fixed surfaces, viscous and turbulent stresses at the plume edge must act to increase the 
momentum of the fluid surrounding the plume. Moving fluid is considered to be part of the plume, 
so in this simplified model these stresses need not be considered explicitly. Using the top-hat profile 
approximation again, the energy disspation per unit volume in the plume, at a given downstream 
distance, is given by 

ePJ = ---~ dz + ug Ap. [B.9] 

The first term on the right of this equation represents the rate of change of the plume kinetic energy 
flux with distance, and the second term represents the work done by the buoyancy force. Using 
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[B.1] and [B.6], [B.9] can be simplified to 

paU3~ 
~pj - l B . 1 0 ]  

r 

The calculation of the turbulent agglomeration rate requires values for the integral of different 
functions of e over the containment volume. The integrals of the functions of e over the plume 
reduce to integrations over z because of the top-hat profile assumption. The integration over z is 
accomplished by adding one more differential equation to the system and solving by the 
Bulirsch-Stoer method as before. 

Discussion 

The most important assumption of the model is that the fluid outside the plume(s)/jet(s) is 
essentially stagnant. This assumption obviously precludes the possibility of calculating the 
distribution of energy dissipation outside the jet. However, as the plume rises energy is fed into 
it at a constant rate by buoyancy forces, causing the energy to be dissipated (relatively) evenly up 
the plume. When the plume reaches the top of the containment, its energy is all kinetic, and is likely 
to be dissipated locally. Furthermore, the results of a much more sophisticated turbulent fluid 
mechanics model applied to the LACE experiment show that the energy dissipation is much higher 
in the jet than outside it (Hutton in an unpublished work). The jet occupies a fairly small fraction 
of the containment volume, so the region outside the jet may still contribute significantly to the 
integral of x/~ over the containment volume, perhaps as much as the jet itself (an upper limit on 
this could be calculated from the energy flux in the plume at the top of the containment). This 
contribution will be very difficult to quantify in a PWR containment because of its complicated 
geometry (subcompartments, internal structures) and lack of symmetry (causing the flow to be fully 
three-dimensional). 

The calculation of free plume behaviour is obviously crude, with its assumption of top-hat 
profiles, and its use of a semi-empirical entrainment correlation. The behaviour could be calculated 
more accurately using a turbulent fluid mechanics computer code. However, it does not seem likely 
that this would dramatically affect the result. 

The plumes spread to a maximum radius - 10 m compared to the containment radius of ~ 25 m. 
This suggests that the downflow will be slow and therefore unlikely to have much effect on the 
plume. However, where more than one plume/jet is present they are likely to interact towards the 
top of the containment. Again this will lead to the energy being dissipated less evenly, and reduce 
the average of v/~. 


